相比驅(qū)動器外置,驅(qū)動器內(nèi)置式靈巧手各關(guān)節(jié)具有較好的剛性,更利于傳感器的直接測量,
且模塊化設計利于更換維護。但是驅(qū)動器的內(nèi)置分布讓通信和控制難度加大,手指尺寸及
靈巧手整手尺寸較大,關(guān)節(jié)靈活度下降。
驅(qū)動器內(nèi)置式靈巧手典型代表產(chǎn)品包括德國宇航中心(DLR)于 2011 研制的面向空間應用
的多指靈巧手 Dexhand,以及哈爾濱工業(yè)大學和 DLR 公司研制的 DLR/HIT II。
德國宇航中心研制的 DLR/HIT II 靈巧手為了應對復雜的空間環(huán)境,將驅(qū)動器及電氣
系統(tǒng)都集中在手掌內(nèi),并通過 2mm 厚的鋁質(zhì)外殼來屏蔽電磁干擾,降低溫度影響。
DLR/HIT II 靈巧手尺寸為人手的 1.5-2 倍,具有 1 個獨立的手掌和 5 根模塊化手指,
每根手指集驅(qū)動、傳感、控制等為一體。其中,拇指與手掌之間有一個類似人手的外
張/收斂自由度,可以通過配置拇指的位置來滿足不同的抓取要求。
靈巧手的外觀設計更加擬人化,手指本體更加纖細;可以采用更大的驅(qū)動電機,從而增大手指的輸出力;驅(qū)動器與手本體之間距離遠增加了控制器設計的難度
第一階段是從 20 世紀 70 年代—20 世紀 90 年代,典型代表是日本的 Okada、美國的 Stanford/JPL 和 Utah/MIT;第二階段是從 20 世紀 90 年代到 2010 年
靈巧手是機器人操作和動作執(zhí)行的末端工具,滿足兩個條件:指關(guān)節(jié)運動時能使物體產(chǎn)生任意運動,指關(guān)節(jié)固定時能完全限制物體的運動,定義靈巧手是指數(shù)≥3,自由度≥9 的末端執(zhí)行器
特斯拉公布了 6 種規(guī)格的執(zhí)行器,旋轉(zhuǎn)執(zhí)行器采用諧波減速器+電機的方案,線性執(zhí)行器采用絲杠+電機的方案,對于手掌關(guān)節(jié),其采用了空心杯電機+蝸輪蝸桿的結(jié)構(gòu)
人形機器人有更強的柔性化水平,更好的環(huán)境感知能力和判斷能力,首要需要解決的問題是如何實現(xiàn)像人一樣去運動,能夠兼顧可靠性
28個執(zhí)行器分別為肩關(guān)節(jié)(單側(cè)三自由度旋轉(zhuǎn)關(guān)節(jié))6個,肘關(guān)節(jié)(單側(cè)直線關(guān)節(jié))2個,腕部關(guān)節(jié)(單側(cè)2個直線+1個旋轉(zhuǎn))6個,腰部(二自由度旋轉(zhuǎn)關(guān)節(jié))2個
無框力矩電機沒有外殼,可以提供更大的設備空 間,中間是中空形式的,便于走線;在設計中,可以使整個機器體積更小,因此可以提供更大的功率密度比
型伺服驅(qū)動器有三種類型,分別為常規(guī)伺服驅(qū)動器,SEA 伺服驅(qū)動器,本體伺服驅(qū)動器;主要由力矩電機,諧波減速器,電機編碼器,輸出編碼器,驅(qū)動板,制動器組成
控制系統(tǒng)根據(jù)指令及傳感信息,向驅(qū)動系統(tǒng)發(fā)出指令,控制其完成規(guī)定的運動,控制系統(tǒng)主要由控制器(硬件)和控制算法(軟件)組成
電機驅(qū)動控制手段先進,速度反饋容易,絕大部分機器人使用電機驅(qū)動;液壓驅(qū)動體積小重量輕,是機器人Atlas使用的驅(qū)動方案;氣動驅(qū)動安全性高,應用于仿生機器人等
根據(jù)能量轉(zhuǎn)換方式的不同,機器人的驅(qū)動方式可分為電機驅(qū)動、液壓驅(qū)動、氣動驅(qū)動等;現(xiàn)有的絕大多數(shù)人形機器人采用電機驅(qū)動
仿人形機器人既需要極強的運動控制能力,其核心 構(gòu)成包括驅(qū)動裝置(伺服系統(tǒng)+減速器),控制裝置(控制器)和各類傳感器,數(shù)量和質(zhì)量要求可能更高