AI軟件設(shè)施加速新基建的賦能效應(yīng)。自2018年新基建的概念提出以來(lái),政產(chǎn)學(xué)研用多方主體發(fā)力建設(shè)人工智能基礎(chǔ)設(shè)施,AI新基建的內(nèi)涵也在這個(gè)過(guò)程中逐步明晰。
AI新基建主要包括數(shù)據(jù)基礎(chǔ)設(shè)施、算力基礎(chǔ)設(shè)施和AI軟件設(shè)施。數(shù)據(jù)和算力基礎(chǔ)設(shè)施非常重要,但是如果沒(méi)有軟件設(shè)施作為連接樞紐,則難以充分發(fā)揮人工智能的賦能效應(yīng),支撐起豐富的AI應(yīng)用和服務(wù)。
因此,AI軟件設(shè)施在近兩年成為產(chǎn)業(yè)焦點(diǎn),AI開(kāi)源框架生態(tài)、預(yù)訓(xùn)練大模型體系、AI軟件平臺(tái)生態(tài)等內(nèi)容都得到了長(zhǎng)足的發(fā)展。
AI新基建的愿景是讓AI像水、電一樣成為觸手可得的普惠資源:政策層面,國(guó)家以及各行業(yè)的“十四五”規(guī)劃相繼對(duì)人工智能新基建提出指導(dǎo)意見(jiàn),不斷推動(dòng)新基建的落地應(yīng)用;產(chǎn)業(yè)層面,頭部科技企業(yè)聯(lián)合地方政府,積極建設(shè)運(yùn)營(yíng)區(qū)域性基礎(chǔ)設(shè)施,不斷加速AI生態(tài)的培育。
智能文檔處理、智能會(huì)議、知識(shí)管理、智能客服等各類企業(yè)智能應(yīng)用不斷發(fā)展,全面賦能企業(yè)辦公、管理、決策、風(fēng)控、營(yíng)銷、服務(wù)等各個(gè)環(huán)節(jié)
頭部科技企業(yè)先后發(fā)布了AI治理戰(zhàn)略和治理體系,成立了相關(guān)委員會(huì)和工作組,聚焦企業(yè)層面的AI治理和風(fēng)險(xiǎn)管理體系,可信AI技術(shù)和保障工具也在蓬勃發(fā)展
全球人工智能市場(chǎng)收支規(guī)模達(dá)850廳美元,預(yù)測(cè),2022年該市場(chǎng)規(guī)模將同比增長(zhǎng)約20%至 1017廳美元,并將于2025年突破2000廳美元大關(guān), CAGR 達(dá)24.5%
調(diào)度決策外賣調(diào)度系統(tǒng)困住騎手;個(gè)性化推薦電商場(chǎng)景下的信息繭房和馬太效應(yīng);內(nèi)容治理如何守護(hù)清朗健康的網(wǎng)絡(luò)環(huán)境;人工智能可以放心使用嗎
數(shù)據(jù)不完備和濫用風(fēng)險(xiǎn)突出而損害用戶的權(quán)益;人工智能算法存在固有缺陷在可解釋性魯棒性偏見(jiàn)歧視等方面尚存在局限;企業(yè)人工智能管理體系不完善
企業(yè)作為落實(shí)人工智能治理原則的重要主體,形成覆蓋人工智能產(chǎn)品全生命周期的風(fēng)險(xiǎn)管理機(jī)制,提出了面向可持續(xù)發(fā)展的人工智能治理基本框架
構(gòu)建面向可持續(xù)發(fā)展的人工智能技術(shù)體系,推動(dòng)人工智能技術(shù)可用、可靠、可信,其內(nèi)涵包括提升技術(shù)安全和構(gòu)建技術(shù)管理機(jī)制兩個(gè)層面工作
在規(guī)劃設(shè)計(jì)階段機(jī)器學(xué)習(xí)場(chǎng)景中固有的不可預(yù)測(cè)性,傳達(dá)實(shí)施偏差會(huì)進(jìn)一步加劇;在研發(fā)部署階段模型運(yùn)行之后的動(dòng)態(tài)更新缺乏足夠驗(yàn)證等挑戰(zhàn)
高增長(zhǎng):未來(lái)五年全球人工智能市場(chǎng)規(guī)模平均增速將超過(guò)20%;高集中:軟件占比近40%硬件產(chǎn)品占比接近35%;高壁壘:滲透率還不到4%
我國(guó)新一代人工智能治理工作框架應(yīng)整合社會(huì)各界對(duì)AI社會(huì)技術(shù)復(fù)合體的離散性認(rèn)知,突破AI包容審慎實(shí)踐的探索,建立基于“邏輯-秩序-監(jiān)管“的人工智能治理工作框架
多模態(tài)數(shù)據(jù)具有異構(gòu)性 多模態(tài)數(shù)據(jù)的關(guān)聯(lián)難度表示較大 多模態(tài)知識(shí)融合困難 多模態(tài)問(wèn)答大多只能處理簡(jiǎn)單的問(wèn)題 多模態(tài)知識(shí)問(wèn)答推理能力弱 可解釋性差
谷歌CVPR 2022擁有18億參數(shù),并使用30億的 標(biāo)注圖像進(jìn)行訓(xùn)練,在ImageNet上取得了新的記錄90.45%,證明了視覺(jué)大模型(30億參數(shù))在廣泛視覺(jué)問(wèn)題上的有效性