首頁
產(chǎn)品系列
行業(yè)應(yīng)用
渠道合作
新聞中心
研究院
投資者關(guān)系
技術(shù)支持
關(guān)于創(chuàng)澤
| En
 
  當(dāng)前位置:首頁 > 新聞資訊 > 機(jī)器人知識(shí) > 重構(gòu)ncnn,騰訊優(yōu)圖開源新一代移動(dòng)端推理框架TNN  
 

重構(gòu)ncnn,騰訊優(yōu)圖開源新一代移動(dòng)端推理框架TNN

來源:AI科技大本營      編輯:創(chuàng)澤      時(shí)間:2020/6/10      主題:其他   [加盟]

6月10日,騰訊優(yōu)圖實(shí)驗(yàn)室宣布正式開源新一代移動(dòng)端深度學(xué)習(xí)推理框架TNN,通過底層技術(shù)優(yōu)化實(shí)現(xiàn)在多個(gè)不同平臺(tái)的輕量部署落地,性能優(yōu)異、簡單易用。騰訊方面稱,基于TNN,開發(fā)者能夠輕松將深度學(xué)習(xí)算法移植到手機(jī)端高效的執(zhí)行,開發(fā)出人工智能 App,真正將 AI 帶到指尖。

GitHub鏈接: https://github.com/Tencent/TNN

輕量級(jí)部署,TNN助力深度學(xué)習(xí)提速增效

深度學(xué)習(xí)對(duì)算力的巨大需求一直制約著其更廣泛的落地,尤其是在移動(dòng)端,由于手機(jī)處理器性能弱、算力無法多機(jī)拓展、運(yùn)算耗時(shí)長等因素常常導(dǎo)致發(fā)熱和高功耗,直接影響到App等應(yīng)用的用戶體驗(yàn)。騰訊優(yōu)圖基于自身在深度學(xué)習(xí)方面的技術(shù)積累,并借鑒業(yè)內(nèi)主流框架優(yōu)點(diǎn),推出了針對(duì)手機(jī)端的高性能、輕量級(jí)移動(dòng)端推理框架TNN。

TNN在設(shè)計(jì)之初便將移動(dòng)端高性能融入核心理念,對(duì)2017年開源的ncnn框架進(jìn)行了重構(gòu)升級(jí)。通過GPU深度調(diào)優(yōu)、ARM SIMD深入?yún)R編指令調(diào)優(yōu)、低精度計(jì)算等技術(shù)手段,在性能上取得了進(jìn)一步提升。以下是MNN, ncnn, TNN框架在多款主流平臺(tái)的實(shí)測性能:






達(dá)摩院金榕教授113頁P(yáng)PT詳解達(dá)摩院在NLP、語音和CV上的進(jìn)展與應(yīng)用實(shí)踐

達(dá)摩院金榕教授介紹了語音、自然語言處理、計(jì)算機(jī)視覺三大核心AI技術(shù)的關(guān)鍵進(jìn)展,并就AI技術(shù)在在實(shí)際應(yīng)用中的關(guān)鍵挑戰(zhàn),以及達(dá)摩院應(yīng)對(duì)挑戰(zhàn)的創(chuàng)新實(shí)踐進(jìn)行了解讀

OpenAI發(fā)布了有史以來最強(qiáng)的NLP預(yù)訓(xùn)練模型GPT-3

2020年5月底OpenAI發(fā)布了有史以來最強(qiáng)的NLP預(yù)訓(xùn)練模型GPT-3,最大的GPT-3模型參數(shù)達(dá)到了1750億個(gè)參數(shù)

多尺度圖卷積神經(jīng)網(wǎng)絡(luò):有效統(tǒng)一三維形狀離散化特征表示

解決了傳統(tǒng)圖卷積神經(jīng)網(wǎng)絡(luò)中圖節(jié)點(diǎn)學(xué)習(xí)到的特征對(duì)圖分辨率和連接關(guān)系敏感的問題,可以實(shí)現(xiàn)在低分辨率的三維形狀上學(xué)習(xí)特征,在高低分辨率形狀之上進(jìn)行測試,并且保持不同分辨率特征的一致性

履約時(shí)間預(yù)估:如何讓外賣更快送達(dá)

外賣履約時(shí)間預(yù)估模型,預(yù)估的是從用戶下單開始到騎手將餐品送達(dá)用戶手中所花的時(shí)間

性能超越最新序列推薦模型,華為諾亞方舟提出記憶增強(qiáng)的圖神經(jīng)網(wǎng)絡(luò)

記憶增強(qiáng)的圖神經(jīng)網(wǎng)絡(luò)對(duì)短期的商品語境信息建模,并使用共享的記憶網(wǎng)絡(luò)來捕捉商品之間的長期依賴,對(duì)多個(gè)模型進(jìn)行了對(duì)比,在Top-K序列推薦中效果極佳

如何創(chuàng)造可信的AI,這里有馬庫斯的11條建議

馬庫斯系統(tǒng)性地闡述了對(duì)當(dāng)前AI研究界的批判,從認(rèn)識(shí)科學(xué)領(lǐng)域中針對(duì)性地給出了11條可執(zhí)行的建議

用于微創(chuàng)手術(shù)的觸覺傳感器(二)

MIS 和RMIS觸覺傳感器最常用的傳感原理是基于電氣的傳感器。這些觸覺傳感器進(jìn)一步分為壓阻型、壓電型和電容型傳感器

用于微創(chuàng)手術(shù)的觸覺傳感器

應(yīng)用于MIS的觸覺傳感器主要是基于電學(xué)或光學(xué)原理開發(fā)的,應(yīng)該是小尺寸和圓柱形的,可在導(dǎo)管的管身或尖端集成

醫(yī)院候診區(qū)流感性疾病的非接觸式綜合檢測平臺(tái)

非接觸式檢測平臺(tái)FluSense由麥克風(fēng)陣列和熱成像攝像機(jī)組成,用于捕捉不同的候診室人群行為,包括咳嗽和語言活動(dòng)以及候診室病人數(shù)量

大阪大學(xué)胡正濤博士(萬偉偉老師團(tuán)隊(duì))為機(jī)器人開發(fā)通用工具解決復(fù)雜變種變量的操作任務(wù)

通過機(jī)械機(jī)構(gòu)實(shí)現(xiàn)機(jī)械手到工具的動(dòng)力傳遞,無需外部控制及供能,對(duì)機(jī)器人的避障路徑規(guī)劃影響極小

深度學(xué)習(xí)的可解釋性研究(三)——是誰在撩動(dòng)琴弦

神經(jīng)網(wǎng)絡(luò)的敏感性分析方法可以分為變量敏感性分析、樣本敏感性分析兩種,變量敏感性分析用來檢驗(yàn)輸入屬性變量對(duì)模型的影響程度,樣本敏感性分析用來研究具體樣本對(duì)模型的重要程度

深度學(xué)習(xí)的可解釋性研究(二)——不如打開箱子看一看

神經(jīng)網(wǎng)絡(luò)模型本身其實(shí)并不是一個(gè)黑箱,其黑箱性在于我們沒辦法用人類可以理解的方式理解模型的具體含義和行為
 
資料獲取
新聞資訊
== 資訊 ==
» 人形機(jī)器人需求廣闊,2035年有望達(dá)千萬
» 人形機(jī)器人:產(chǎn)業(yè)躍遷,政策驅(qū)動(dòng)、技術(shù)拐點(diǎn)
» 天津大學(xué)《深度解讀DeepSeek: 部
» 醫(yī)療場景:精細(xì)化智能手術(shù)機(jī)器人與康復(fù)機(jī)器
» 家庭服務(wù)、養(yǎng)老服務(wù)及特殊場景:四足、人形
» 機(jī)器人商業(yè)服務(wù)場景:多元化帶來的豐富需求
» 大模型與機(jī)器人本體結(jié)合提供感知交互新能力
» 智能機(jī)器人產(chǎn)業(yè)研究報(bào)告2025-驅(qū)動(dòng)因素
» 關(guān)于印發(fā)廣東省推動(dòng)人工智能與機(jī)器人產(chǎn)業(yè)創(chuàng)
» 人工智能機(jī)器人的崛起,2035年將有13
» DeepSeek使用教程藍(lán)皮書-從入門到
» 教大家如何使用Deepseek AI進(jìn)行
» DeepSeek隱藏玩法,不要用結(jié)構(gòu)化提
» DeepSeek神級(jí)提示詞,讓你輕松駕馭
» DeepSeek 30個(gè)喂飯指令-知識(shí)付
 
== 機(jī)器人推薦 ==
 
迎賓講解服務(wù)機(jī)器人

服務(wù)機(jī)器人(迎賓、講解、導(dǎo)診...)

智能消毒機(jī)器人

智能消毒機(jī)器人

機(jī)器人底盤

機(jī)器人底盤

 

商用機(jī)器人  Disinfection Robot   展廳機(jī)器人  智能垃圾站  輪式機(jī)器人底盤  迎賓機(jī)器人  移動(dòng)機(jī)器人底盤  講解機(jī)器人  紫外線消毒機(jī)器人  大屏機(jī)器人  霧化消毒機(jī)器人  服務(wù)機(jī)器人底盤  智能送餐機(jī)器人  霧化消毒機(jī)  機(jī)器人OEM代工廠  消毒機(jī)器人排名  智能配送機(jī)器人  圖書館機(jī)器人  導(dǎo)引機(jī)器人  移動(dòng)消毒機(jī)器人  導(dǎo)診機(jī)器人  迎賓接待機(jī)器人  前臺(tái)機(jī)器人  導(dǎo)覽機(jī)器人  酒店送物機(jī)器人  云跡科技潤機(jī)器人  云跡酒店機(jī)器人  智能導(dǎo)診機(jī)器人 
版權(quán)所有 © 創(chuàng)澤智能機(jī)器人集團(tuán)股份有限公司     中國運(yùn)營中心:北京·清華科技園九號(hào)樓5層     中國生產(chǎn)中心:山東日照太原路71號(hào)
銷售1:4006-935-088    銷售2:4006-937-088   客服電話: 4008-128-728