首頁(yè)
產(chǎn)品系列
行業(yè)應(yīng)用
渠道合作
新聞中心
研究院
投資者關(guān)系
技術(shù)支持
關(guān)于創(chuàng)澤
| En
 
  當(dāng)前位置:首頁(yè) > 新聞資訊 > 機(jī)器人開(kāi)發(fā) > 讓大規(guī)模深度學(xué)習(xí)訓(xùn)練線性加速、性能無(wú)損,基于BMUF的Adam優(yōu)化器并行化實(shí)踐  
 

讓大規(guī)模深度學(xué)習(xí)訓(xùn)練線性加速、性能無(wú)損,基于BMUF的Adam優(yōu)化器并行化實(shí)踐

來(lái)源:AI科技大本營(yíng)      編輯:創(chuàng)澤      時(shí)間:2020/5/29      主題:其他   [加盟]

作為一種自適應(yīng)步長(zhǎng)隨機(jī)梯度優(yōu)化器,自2014年提出以來(lái),Adam 算法便以其卓越的性能風(fēng)靡深度學(xué)習(xí)領(lǐng)域。為了提高應(yīng)用于訓(xùn)練大規(guī)模任務(wù)時(shí)的效率,該算法通常與同步隨機(jī)梯度(Synchronous Stochastic Gradient,SSG)技術(shù)相結(jié)合,采用數(shù)據(jù)并行(data parallel)的方式在多臺(tái)機(jī)器上執(zhí)行。在本文中,我們稱這一方法為 Sync-Adam。

本質(zhì)上來(lái)講,Sync-Adam 通過(guò)將一個(gè) minibatch 內(nèi)樣本的梯度計(jì)算分布到多臺(tái)機(jī)器上達(dá)到加速目的,因此通信十分頻繁,并且隨著并行機(jī)器數(shù)目增多,minibatch 內(nèi)樣本的數(shù)量也成比例增加,這種情況下,通常會(huì)損害最終得到的模型的性能。為解決基于 SSG 的 Adam 算法可擴(kuò)展性差的難題,我們把目光投向了逐區(qū)塊模型更新濾波(Blockwise Model-Update Filtering, BMUF)框架。

BMUF 是一種通信高效的通用分布式優(yōu)化算法框架,于2016年由微軟亞洲研究院語(yǔ)音組的研究人員提出并發(fā)表。該算法在多個(gè)并行工作機(jī)之間周期性同步模型更新信息,并與歷史更新信息相結(jié)合提升全局模型性能。與基于 SSG 的算法相比,BMUF 具有通信頻率較低、訓(xùn)練幾乎線性加速、模型性能基本無(wú)損的特點(diǎn)。這一算法已經(jīng)在工業(yè)界廣泛用于大規(guī)模深度學(xué)習(xí)模型的訓(xùn)練。

本文中,我們采用 BMUF 框架并行化 Adam 算法,并在微軟大規(guī)模 OCR 和語(yǔ)音產(chǎn)品數(shù)據(jù)集上進(jìn)行了測(cè)試。實(shí)驗(yàn)結(jié)果表明,在大規(guī)模 OCR 任務(wù)中,BMUF-Adam 在多達(dá)64機(jī)的并行訓(xùn)練中幾乎實(shí)現(xiàn)了線性加速的同時(shí),基本沒(méi)有模型性能損失,在32機(jī)大詞匯量連續(xù)語(yǔ)音識(shí)別任務(wù)中也獲得了類似效果。

接下來(lái)我們探討如何采用 BMUF 框架賦能 Adam 算法,在大規(guī)模深度學(xué)習(xí)任務(wù)上成就不凡。


在基于 BMUF 的訓(xùn)練框架下,假設(shè)我們總共有 N 個(gè)并行工作機(jī),一個(gè)工作機(jī)可以是一塊或多塊 GPU 卡,也可以是一個(gè)計(jì)算節(jié)點(diǎn)。給定一個(gè)包含 Nτ 個(gè) minibatch 的訓(xùn)練數(shù)據(jù)子集,首先我們將這些數(shù)據(jù)均勻分布到 N 個(gè)并行工作機(jī),每臺(tái)工作機(jī)獲得 τ 個(gè) minibatch。從一個(gè)共同的初始模型 θ_(t-τ)^((init)) 開(kāi)始,N 個(gè)工作機(jī)獨(dú)立更新各自的局部模型 τ 步,得到 {θ_(t,1),θ_(t,2),…,θ_(t,N)},對(duì)局部模型取平均得到 θ ̅_t。這一過(guò)程稱之為數(shù)據(jù)塊內(nèi)并行優(yōu)化(Intra-Block Parallel Optimization, IBPO)。與直接將 θ ̅_t 作為全局模型不同,BMUF 技術(shù)將歷史更新信息與當(dāng)前更新信息結(jié)合,得到全局模型:






音樂(lè)人工智能、計(jì)算機(jī)聽(tīng)覺(jué)及音樂(lè)科技

音樂(lè)科技、音樂(lè)人工智能與計(jì)算機(jī)聽(tīng)覺(jué)以數(shù)字音樂(lè)和聲音為研究對(duì)象,是聲學(xué)、心理學(xué)、信號(hào)處理、人工智能、多媒體、音樂(lè)學(xué)及各行業(yè)領(lǐng)域知識(shí)相結(jié)合的重要交叉學(xué)科,具有重要的學(xué)術(shù)研究和產(chǎn)業(yè)開(kāi)發(fā)價(jià)值

【深度】未來(lái)5-10年計(jì)算機(jī)視覺(jué)發(fā)展趨勢(shì)為何?

專家(查紅彬,陳熙霖,盧湖川,劉燁斌,章國(guó)鋒)從計(jì)算機(jī)視覺(jué)發(fā)展歷程、現(xiàn)有研究局限性、未來(lái)研究方向以及視覺(jué)研究范式等多方面展開(kāi)了深入的探討

華南理工大學(xué)羅晶博士和楊辰光教授團(tuán)隊(duì)發(fā)文提出遙操作機(jī)器人交互感知與學(xué)習(xí)算法

羅晶博士和楊辰光教授團(tuán)隊(duì)提出,遙操作機(jī)器人系統(tǒng)可以自然地與外界環(huán)境進(jìn)行交互、編碼人機(jī)協(xié)作任務(wù)和生成任務(wù)模型,從而提升系統(tǒng)的類人化操作行為和智能化程度

實(shí)時(shí)識(shí)別卡扣成功裝配的機(jī)器學(xué)習(xí)框架

卡扣式裝配廣泛應(yīng)用于多種產(chǎn)品類型的制造中,卡扣裝配是結(jié)構(gòu)性的鎖定機(jī)制,通過(guò)一個(gè)機(jī)器學(xué)習(xí)框架將人類識(shí)別成功快速裝配的能力遷移到自主機(jī)器人裝配上。

基于多任務(wù)學(xué)習(xí)和負(fù)反饋的深度召回模型

基于行為序列的深度學(xué)習(xí)推薦模型搭配高性能的近似檢索算法可以實(shí)現(xiàn)既準(zhǔn)又快的召回性能,如何利用這些豐富的反饋信息改進(jìn)召回模型的性能

張帆博士與Yiannis Demiris教授團(tuán)隊(duì)提出高效的機(jī)器人學(xué)習(xí)抓取衣服方法

機(jī)器人輔助穿衣通常人工的將衣服附在機(jī)器人末端執(zhí)行器上,忽略機(jī)器人識(shí)別衣服抓取點(diǎn)并進(jìn)行抓取的過(guò)程,從而將問(wèn)題簡(jiǎn)化

百度算法大牛35頁(yè)P(yáng)PT講解基于EasyDL訓(xùn)練并部署企業(yè)級(jí)高精度AI模型

百度AI開(kāi)發(fā)平臺(tái)高級(jí)研發(fā)工程師餅干老師,為大家系統(tǒng)講解企業(yè)在AI模型開(kāi)發(fā)中的難點(diǎn),以及針對(duì)這些難點(diǎn),百度EasyDL專業(yè)版又是如何解決的

Technica公司發(fā)布智能霧計(jì)算平臺(tái)技術(shù)白皮書(shū)

SmartFog可以輕松地將人工智能分析微服務(wù)部署到云、霧和物聯(lián)網(wǎng)設(shè)備上,其架構(gòu)支持與現(xiàn)有系統(tǒng)的靈活集成,提供了大量的實(shí)現(xiàn)方案,要用下一代人工智能算法來(lái)彌補(bǔ)現(xiàn)有解決方案的不足。

深度學(xué)習(xí)在術(shù)前手術(shù)規(guī)劃中的應(yīng)用

深度學(xué)習(xí)對(duì)推動(dòng)術(shù)前手術(shù)規(guī)劃尤其重要,手術(shù)規(guī)劃中要根據(jù)現(xiàn)有的醫(yī)療記錄來(lái)計(jì)劃手術(shù)程序,而成像對(duì)于手術(shù)的成功至關(guān)重要
 
資料獲取
新聞資訊
== 資訊 ==
» 人形機(jī)器人未來(lái)3-5年能夠?qū)崿F(xiàn)產(chǎn)業(yè)化的方
» 導(dǎo)診服務(wù)機(jī)器人上崗門(mén)診大廳 助力醫(yī)院智慧
» 山東省青島市政府辦公廳發(fā)布《數(shù)字青島20
» 關(guān)于印發(fā)《青海省支持大數(shù)據(jù)產(chǎn)業(yè)發(fā)展政策措
» 全屋無(wú)主燈智能化規(guī)范
» 微波雷達(dá)傳感技術(shù)室內(nèi)照明應(yīng)用規(guī)范
» 人工智能研發(fā)運(yùn)營(yíng)體系(ML0ps)實(shí)踐指
» 四驅(qū)四轉(zhuǎn)移動(dòng)機(jī)器人運(yùn)動(dòng)模型及應(yīng)用分析
» 國(guó)內(nèi)細(xì)分賽道企業(yè)在 AIGC 各應(yīng)用場(chǎng)景
» 國(guó)內(nèi)科技大廠布局生成式 AI,未來(lái)有望借
» AIGC領(lǐng)域相關(guān)初創(chuàng)公司及業(yè)務(wù)場(chǎng)景梳理
» ChatGPT 以 GPT+RLHF 模
» AIGC提升文字 圖片滲透率,視頻 直播
» AI商業(yè)化空間前景廣闊應(yīng)用場(chǎng)景豐富
» AI 內(nèi)容創(chuàng)作成本大幅降低且耗時(shí)更短 優(yōu)
 
== 機(jī)器人推薦 ==
 
迎賓講解服務(wù)機(jī)器人

服務(wù)機(jī)器人(迎賓、講解、導(dǎo)診...)

智能消毒機(jī)器人

智能消毒機(jī)器人

機(jī)器人底盤(pán)

機(jī)器人底盤(pán)

 

商用機(jī)器人  Disinfection Robot   展廳機(jī)器人  智能垃圾站  輪式機(jī)器人底盤(pán)  迎賓機(jī)器人  移動(dòng)機(jī)器人底盤(pán)  講解機(jī)器人  紫外線消毒機(jī)器人  大屏機(jī)器人  霧化消毒機(jī)器人  服務(wù)機(jī)器人底盤(pán)  智能送餐機(jī)器人  霧化消毒機(jī)  機(jī)器人OEM代工廠  消毒機(jī)器人排名  智能配送機(jī)器人  圖書(shū)館機(jī)器人  導(dǎo)引機(jī)器人  移動(dòng)消毒機(jī)器人  導(dǎo)診機(jī)器人  迎賓接待機(jī)器人  前臺(tái)機(jī)器人  導(dǎo)覽機(jī)器人  酒店送物機(jī)器人  云跡科技潤(rùn)機(jī)器人  云跡酒店機(jī)器人  智能導(dǎo)診機(jī)器人 
版權(quán)所有 © 創(chuàng)澤智能機(jī)器人集團(tuán)股份有限公司     中國(guó)運(yùn)營(yíng)中心:北京·清華科技園九號(hào)樓5層     中國(guó)生產(chǎn)中心:山東日照太原路71號(hào)
銷(xiāo)售1:4006-935-088    銷(xiāo)售2:4006-937-088   客服電話: 4008-128-728